Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Measurements of Three-Level Hierarchical Structure in the Outliers in the Spectrum of Deepnet Hessians (1901.08244v1)

Published 24 Jan 2019 in cs.LG and stat.ML

Abstract: We consider deep classifying neural networks. We expose a structure in the derivative of the logits with respect to the parameters of the model, which is used to explain the existence of outliers in the spectrum of the Hessian. Previous works decomposed the Hessian into two components, attributing the outliers to one of them, the so-called Covariance of gradients. We show this term is not a Covariance but a second moment matrix, i.e., it is influenced by means of gradients. These means possess an additive two-way structure that is the source of the outliers in the spectrum. This structure can be used to approximate the principal subspace of the Hessian using certain "averaging" operations, avoiding the need for high-dimensional eigenanalysis. We corroborate this claim across different datasets, architectures and sample sizes.

Citations (81)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube