Papers
Topics
Authors
Recent
2000 character limit reached

Measurements of Three-Level Hierarchical Structure in the Outliers in the Spectrum of Deepnet Hessians (1901.08244v1)

Published 24 Jan 2019 in cs.LG and stat.ML

Abstract: We consider deep classifying neural networks. We expose a structure in the derivative of the logits with respect to the parameters of the model, which is used to explain the existence of outliers in the spectrum of the Hessian. Previous works decomposed the Hessian into two components, attributing the outliers to one of them, the so-called Covariance of gradients. We show this term is not a Covariance but a second moment matrix, i.e., it is influenced by means of gradients. These means possess an additive two-way structure that is the source of the outliers in the spectrum. This structure can be used to approximate the principal subspace of the Hessian using certain "averaging" operations, avoiding the need for high-dimensional eigenanalysis. We corroborate this claim across different datasets, architectures and sample sizes.

Citations (81)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.