Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Reinforcement Learning Ship Autopilot: Sample efficient and Model Predictive Control-based Approach (1901.07905v2)

Published 23 Jan 2019 in cs.SY and eess.SY

Abstract: In this research we focus on developing a reinforcement learning system for a challenging task: autonomous control of a real-sized boat, with difficulties arising from large uncertainties in the challenging ocean environment and the extremely high cost of exploring and sampling with a real boat. To this end, we explore a novel Gaussian processes (GP) based reinforcement learning approach that combines sample-efficient model-based reinforcement learning and model predictive control (MPC). Our approach, sample-efficient probabilistic model predictive control (SPMPC), iteratively learns a Gaussian process dynamics model and uses it to efficiently update control signals within the MPC closed control loop. A system using SPMPC is built to efficiently learn an autopilot task. After investigating its performance in a simulation modeled upon real boat driving data, the proposed system successfully learns to drive a real-sized boat equipped with a single engine and sensors measuring GPS, speed, direction, and wind in an autopilot task without human demonstration.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.