Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

SirenAttack: Generating Adversarial Audio for End-to-End Acoustic Systems (1901.07846v2)

Published 23 Jan 2019 in cs.CR

Abstract: Despite their immense popularity, deep learning-based acoustic systems are inherently vulnerable to adversarial attacks, wherein maliciously crafted audios trigger target systems to misbehave. In this paper, we present SirenAttack, a new class of attacks to generate adversarial audios. Compared with existing attacks, SirenAttack highlights with a set of significant features: (i) versatile -- it is able to deceive a range of end-to-end acoustic systems under both white-box and black-box settings; (ii) effective -- it is able to generate adversarial audios that can be recognized as specific phrases by target acoustic systems; and (iii) stealthy -- it is able to generate adversarial audios indistinguishable from their benign counterparts to human perception. We empirically evaluate SirenAttack on a set of state-of-the-art deep learning-based acoustic systems (including speech command recognition, speaker recognition and sound event classification), with results showing the versatility, effectiveness, and stealthiness of SirenAttack. For instance, it achieves 99.45% attack success rate on the IEMOCAP dataset against the ResNet18 model, while the generated adversarial audios are also misinterpreted by multiple popular ASR platforms, including Google Cloud Speech, Microsoft Bing Voice, and IBM Speech-to-Text. We further evaluate three potential defense methods to mitigate such attacks, including adversarial training, audio downsampling, and moving average filtering, which leads to promising directions for further research.

Citations (123)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.