Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Unified estimation framework for unnormalized models with statistical efficiency (1901.07710v3)

Published 23 Jan 2019 in stat.ML and cs.LG

Abstract: The parameter estimation of unnormalized models is a challenging problem. The maximum likelihood estimation (MLE) is computationally infeasible for these models since normalizing constants are not explicitly calculated. Although some consistent estimators have been proposed earlier, the problem of statistical efficiency remains. In this study, we propose a unified, statistically efficient estimation framework for unnormalized models and several efficient estimators, whose asymptotic variance is the same as the MLE. The computational cost of these estimators is also reasonable and they can be employed whether the sample space is discrete or continuous. The loss functions of the proposed estimators are derived by combining the following two methods: (1) density-ratio matching using Bregman divergence, and (2) plugging-in nonparametric estimators. We also analyze the properties of the proposed estimators when the unnormalized models are misspecified. The experimental results demonstrate the advantages of our method over existing approaches.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.