Papers
Topics
Authors
Recent
2000 character limit reached

Learning Configuration Space Belief Model from Collision Checks for Motion Planning (1901.07646v2)

Published 22 Jan 2019 in cs.RO and cs.AI

Abstract: For motion planning in high dimensional configuration spaces, a significant computational bottleneck is collision detection. Our aim is to reduce the expected number of collision checks by creating a belief model of the configuration space using results from collision tests. We assume the robot's configuration space to be a continuous ambient space whereby neighbouring points tend to share the same collision state. This enables us to formulate a probabilistic model that assigns to unevaluated configurations a belief estimate of being collision-free. We have presented a detailed comparative analysis of various kNN methods and distance metrics used to evaluate C-space belief. We have also proposed a weighting matrix in C-space to improve the performance of kNN methods. Moreover, we have proposed a topological method that exploits the higher order structure of the C-space to generate a belief model. Our results indicate that our proposed topological method outperforms kNN methods by achieving higher model accuracy while being computationally efficient.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.