Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

CREATE: Cohort Retrieval Enhanced by Analysis of Text from Electronic Health Records using OMOP Common Data Model (1901.07601v1)

Published 22 Jan 2019 in cs.IR

Abstract: Background: Widespread adoption of electronic health records (EHRs) has enabled secondary use of EHR data for clinical research and healthcare delivery. Natural language processing (NLP) techniques have shown promise in their capability to extract the embedded information in unstructured clinical data, and information retrieval (IR) techniques provide flexible and scalable solutions that can augment the NLP systems for retrieving and ranking relevant records. Methods: In this paper, we present the implementation of Cohort Retrieval Enhanced by Analysis of Text from EHRs (CREATE), a cohort retrieval system that can execute textual cohort selection queries on both structured and unstructured EHR data. CREATE is a proof-of-concept system that leverages a combination of structured queries and IR techniques on NLP results to improve cohort retrieval performance while adopting the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) to enhance model portability. The NLP component empowered by cTAKES is used to extract CDM concepts from textual queries. We design a hierarchical index in Elasticsearch to support CDM concept search utilizing IR techniques and frameworks. Results: Our case study on 5 cohort identification queries evaluated using the IR metric, P@5 (Precision at 5) at both the patient-level and document-level, demonstrates that CREATE achieves an average P@5 of 0.90, which outperforms systems using only structured data or only unstructured data with average P@5s of 0.54 and 0.74, respectively.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.