Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Unsupervised Learning of Neural Networks to Explain Neural Networks (extended abstract) (1901.07538v1)

Published 21 Jan 2019 in cs.LG, cs.AI, and stat.ML

Abstract: This paper presents an unsupervised method to learn a neural network, namely an explainer, to interpret a pre-trained convolutional neural network (CNN), i.e., the explainer uses interpretable visual concepts to explain features in middle conv-layers of a CNN. Given feature maps of a conv-layer of the CNN, the explainer performs like an auto-encoder, which decomposes the feature maps into object-part features. The object-part features are learned to reconstruct CNN features without much loss of information. We can consider the disentangled representations of object parts a paraphrase of CNN features, which help people understand the knowledge encoded by the CNN. More crucially, we learn the explainer via knowledge distillation without using any annotations of object parts or textures for supervision. In experiments, our method was widely used to interpret features of different benchmark CNNs, and explainers significantly boosted the feature interpretability without hurting the discrimination power of the CNNs.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.