Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Debugging Frame Semantic Role Labeling (1901.07475v1)

Published 22 Jan 2019 in cs.CL

Abstract: We propose a quantitative and qualitative analysis of the performances of statistical models for frame semantic structure extraction. We report on a replication study on FrameNet 1.7 data and show that preprocessing toolkits play a major role in argument identification performances, observing gains similar in their order of magnitude to those reported by recent models for frame semantic parsing. We report on the robustness of a recent statistical classifier for frame semantic parsing to lexical configurations of predicate-argument structures, relying on an artificially augmented dataset generated using a rule-based algorithm combining valence pattern matching and lexical substitution. We prove that syntactic pre-processing plays a major role in the performances of statistical classifiers to argument identification, and discuss the core reasons of syntactic mismatch between dependency parsers output and FrameNet syntactic formalism. Finally, we suggest new leads for improving statistical models for frame semantic parsing, including joint syntax-semantic parsing relying on FrameNet syntactic formalism, latent classes inference via split-and-merge algorithms and neural network architectures relying on rich input representations of words.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)