Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Adversarial Approach to High-Quality, Sentiment-Controlled Neural Dialogue Generation (1901.07129v1)

Published 22 Jan 2019 in cs.CL

Abstract: In this work, we propose a method for neural dialogue response generation that allows not only generating semantically reasonable responses according to the dialogue history, but also explicitly controlling the sentiment of the response via sentiment labels. Our proposed model is based on the paradigm of conditional adversarial learning; the training of a sentiment-controlled dialogue generator is assisted by an adversarial discriminator which assesses the fluency and feasibility of the response generating from the dialogue history and a given sentiment label. Because of the flexibility of our framework, the generator could be a standard sequence-to-sequence (SEQ2SEQ) model or a more complicated one such as a conditional variational autoencoder-based SEQ2SEQ model. Experimental results using automatic and human evaluation both demonstrate that our proposed framework is able to generate both semantically reasonable and sentiment-controlled dialogue responses.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.