Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Training Neural Networks as Learning Data-adaptive Kernels: Provable Representation and Approximation Benefits (1901.07114v2)

Published 21 Jan 2019 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: Consider the problem: given the data pair $(\mathbf{x}, \mathbf{y})$ drawn from a population with $f_(x) = \mathbf{E}[\mathbf{y} | \mathbf{x} = x]$, specify a neural network model and run gradient flow on the weights over time until reaching any stationarity. How does $f_t$, the function computed by the neural network at time $t$, relate to $f_$, in terms of approximation and representation? What are the provable benefits of the adaptive representation by neural networks compared to the pre-specified fixed basis representation in the classical nonparametric literature? We answer the above questions via a dynamic reproducing kernel Hilbert space (RKHS) approach indexed by the training process of neural networks. Firstly, we show that when reaching any local stationarity, gradient flow learns an adaptive RKHS representation and performs the global least-squares projection onto the adaptive RKHS, simultaneously. Secondly, we prove that as the RKHS is data-adaptive and task-specific, the residual for $f_*$ lies in a subspace that is potentially much smaller than the orthogonal complement of the RKHS. The result formalizes the representation and approximation benefits of neural networks. Lastly, we show that the neural network function computed by gradient flow converges to the kernel ridgeless regression with an adaptive kernel, in the limit of vanishing regularization. The adaptive kernel viewpoint provides new angles of studying the approximation, representation, generalization, and optimization advantages of neural networks.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.