Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Robustness of Maximal $α$-Leakage to Side Information (1901.07105v2)

Published 21 Jan 2019 in cs.IT and math.IT

Abstract: Maximal $\alpha$-leakage is a tunable measure of information leakage based on the accuracy of guessing an arbitrary function of private data based on public data. The parameter $\alpha$ determines the loss function used to measure the accuracy of a belief, ranging from log-loss at $\alpha=1$ to the probability of error at $\alpha=\infty$. To study the effect of side information on this measure, we introduce and define conditional maximal $\alpha$-leakage. We show that, for a chosen mapping (channel) from the actual (viewed as private) data to the released (public) data and some side information, the conditional maximal $\alpha$-leakage is the supremum (over all side information) of the conditional Arimoto channel capacity where the conditioning is on the side information. We prove that if the side information is conditionally independent of the public data given the private data, the side information cannot increase the information leakage.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.