Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A Lower Bound on the Error Exponent of Linear Block Codes over the Erasure Channel (1901.06975v1)

Published 21 Jan 2019 in cs.IT and math.IT

Abstract: A lower bound on the maximum likelihood (ML) decoding error exponent of linear block code ensembles, on the erasure channel, is developed. The lower bound turns to be positive, over an ensemble specific interval of erasure probabilities, when the ensemble weight spectral shape function tends to a negative value as the fractional codeword weight tends to zero. For these ensembles we can therefore lower bound the block-wise ML decoding threshold. Two examples are presented, namely, linear random parity-check codes and fixed-rate Raptor codes with linear random precoders. While for the former a full analytical solution is possible, for the latter we can lower bound the ML decoding threshold on the erasure channel by simply solving a 2 x 2 system of nonlinear equations.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube