2000 character limit reached
Domain Adaptation for sEMG-based Gesture Recognition with Recurrent Neural Networks (1901.06958v2)
Published 21 Jan 2019 in cs.LG, cs.HC, and stat.ML
Abstract: Surface Electromyography (sEMG/EMG) is to record muscles' electrical activity from a restricted area of the skin by using electrodes. The sEMG-based gesture recognition is extremely sensitive of inter-session and inter-subject variances. We propose a model and a deep-learning-based domain adaptation method to approximate the domain shift for recognition accuracy enhancement. Analysis performed on sparse and HighDensity (HD) sEMG public datasets validate that our approach outperforms state-of-the-art methods.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.