Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Optimal Task Scheduling Benefits From a Duplicate-Free State-Space (1901.06899v1)

Published 21 Jan 2019 in cs.DC

Abstract: The NP-hard problem of task scheduling with communication delays (P|prec,c_{ij}|C_{\mathrm{max}}) is often tackled using approximate methods, but guarantees on the quality of these heuristic solutions are hard to come by. Optimal schedules are therefore invaluable for properly evaluating these heuristics, as well as being very useful for applications in time critical systems. Optimal solving using branch-and-bound algorithms like A* has been shown to be promising in the past, with a state-space model we refer to as exhaustive list scheduling (ELS). The obvious weakness of this model is that it leads to the production of large numbers of duplicate states during a search, requiring special techniques to mitigate this which cost additional time and memory. In this paper we define a new state-space model (AO) in which we divide the problem into two distinct sub-problems: first we decide the allocations of all tasks to processors, and then we order the tasks on their allocated processors in order to produce a complete schedule. This two-phase state-space model offers no potential for the production of duplicates. We also describe how the pruning techniques and optimisations developed for the ELS model were adapted or made obsolete by the AO model. An experimental evaluation shows that the use of this new state-space model leads to a significant increase in the number of task graphs able to be scheduled within a feasible time-frame, particularly for task graphs with a high communication-to-computation ratio. Finally, some advanced lower bound heuristics are proposed for the AO model, and evaluation demonstrates that significant gains can be achieved from the consideration of necessary idle time.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.