Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Salient Object Detection with Lossless Feature Reflection and Weighted Structural Loss (1901.06823v1)

Published 21 Jan 2019 in cs.CV

Abstract: Salient object detection (SOD), which aims to identify and locate the most salient pixels or regions in images, has been attracting more and more interest due to its various real-world applications. However, this vision task is quite challenging, especially under complex image scenes. Inspired by the intrinsic reflection of natural images, in this paper we propose a novel feature learning framework for large-scale salient object detection. Specifically, we design a symmetrical fully convolutional network (SFCN) to effectively learn complementary saliency features under the guidance of lossless feature reflection. The location information, together with contextual and semantic information, of salient objects are jointly utilized to supervise the proposed network for more accurate saliency predictions. In addition, to overcome the blurry boundary problem, we propose a new weighted structural loss function to ensure clear object boundaries and spatially consistent saliency. The coarse prediction results are effectively refined by these structural information for performance improvements. Extensive experiments on seven saliency detection datasets demonstrate that our approach achieves consistently superior performance and outperforms the very recent state-of-the-art methods with a large margin.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Pingping Zhang (69 papers)
  2. Wei Liu (1135 papers)
  3. Huchuan Lu (199 papers)
  4. Chunhua Shen (404 papers)
Citations (50)

Summary

We haven't generated a summary for this paper yet.