Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Fast algorithms at low temperatures via Markov chains (1901.06653v6)

Published 20 Jan 2019 in cs.DS, math.CO, and math.PR

Abstract: We define a discrete-time Markov chain for abstract polymer models and show that under sufficient decay of the polymer weights, this chain mixes rapidly. We apply this Markov chain to polymer models derived from the hard-core and ferromagnetic Potts models on bounded-degree (bipartite) expander graphs. In this setting, Jenssen, Keevash and Perkins (2019) recently gave an FPTAS and an efficient sampling algorithm at sufficiently high fugacity and low temperature respectively. Their method is based on using the cluster expansion to obtain a complex zero-free region for the partition function of a polymer model, and then approximating this partition function using the polynomial interpolation method of Barvinok. Our approach via the polymer model Markov chain circumvents the zero-free analysis and the generalization to complex parameters, and leads to a sampling algorithm with a fast running time of $O(n \log n)$ for the Potts model and $O(n2 \log n)$ for the hard-core model, in contrast to typical running times of $n{O(\log \Delta)}$ for algorithms based on Barvinok's polynomial interpolation method on graphs of maximum degree $\Delta$. We finally combine our results for the hard-core and ferromagnetic Potts models with standard Markov chain comparison tools to obtain polynomial mixing time for the usual spin Glauber dynamics restricted to even and odd or `red' dominant portions of the respective state spaces.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.