Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improved Selective Refinement Network for Face Detection (1901.06651v3)

Published 20 Jan 2019 in cs.CV

Abstract: As a long-standing problem in computer vision, face detection has attracted much attention in recent decades for its practical applications. With the availability of face detection benchmark WIDER FACE dataset, much of the progresses have been made by various algorithms in recent years. Among them, the Selective Refinement Network (SRN) face detector introduces the two-step classification and regression operations selectively into an anchor-based face detector to reduce false positives and improve location accuracy simultaneously. Moreover, it designs a receptive field enhancement block to provide more diverse receptive field. In this report, to further improve the performance of SRN, we exploit some existing techniques via extensive experiments, including new data augmentation strategy, improved backbone network, MS COCO pretraining, decoupled classification module, segmentation branch and Squeeze-and-Excitation block. Some of these techniques bring performance improvements, while few of them do not well adapt to our baseline. As a consequence, we present an improved SRN face detector by combining these useful techniques together and obtain the best performance on widely used face detection benchmark WIDER FACE dataset.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.