Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Unsupervised User Identity Linkage via Factoid Embedding (1901.06648v1)

Published 20 Jan 2019 in cs.SI

Abstract: User identity linkage (UIL), the problem of matching user account across multiple online social networks (OSNs), is widely studied and important to many real-world applications. Most existing UIL solutions adopt a supervised or semi-supervised approach which generally suffer from scarcity of labeled data. In this paper, we propose Factoid Embedding, a novel framework that adopts an unsupervised approach. It is designed to cope with different profile attributes, content types and network links of different OSNs. The key idea is that each piece of information about a user identity describes the real identity owner, and thus distinguishes the owner from other users. We represent such a piece of information by a factoid and model it as a triplet consisting of user identity, predicate, and an object or another user identity. By embedding these factoids, we learn the user identity latent representations and link two user identities from different OSNs if they are close to each other in the user embedding space. Our Factoid Embedding algorithm is designed such that as we learn the embedding space, each embedded factoid is "translated" into a motion in the user embedding space to bring similar user identities closer, and different user identities further apart. Extensive experiments are conducted to evaluate Factoid Embedding on two real-world OSNs data sets. The experiment results show that Factoid Embedding outperforms the state-of-the-art methods even without training data.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.