Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Tunable Approximations to Control Time-to-Solution in an HPC Molecular Docking Mini-App (1901.06363v1)

Published 18 Jan 2019 in cs.DC

Abstract: The drug discovery process involves several tasks to be performed in vivo, in vitro and in silico. Molecular docking is a task typically performed in silico. It aims at finding the three-dimensional pose of a given molecule when it interacts with the target protein binding site. This task is often done for virtual screening a huge set of molecules to find the most promising ones, which will be forwarded to the later stages of the drug discovery process. Given the huge complexity of the problem, molecular docking cannot be solved by exploring the entire space of the ligand poses. State-of-the-art approaches face the problem by sampling the space of the ligand poses to generate results in a reasonable time budget. In this work, we improve the geometric approach to molecular docking by introducing tunable approximations. In particular, we analyzed and enriched the original implementation with tunable software knobs to explore and control the performance-accuracy tradeoffs. We modeled time-to-solution of the virtual screening task as a function of software knobs, input data features, and available computational resources. Therefore, the application can autotune its configuration according to a user-defined time budget. We used a Mini-App derived by LiGenDock - a state-of-the-art molecular docking application - to validate the proposed approach. We run the enhanced Mini-App on an HPC system by using a very large database of pockets and ligands. The proposed approach exposes a time-to-solution interval spanning more than one order of magnitude with accuracy degradation up to 30%, more in general providing different accuracy levels according to the needs of the virtual screening campaign.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.