Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Multi-Object Tracking with Multiple Cues and Switcher-Aware Classification (1901.06129v1)

Published 18 Jan 2019 in cs.CV

Abstract: In this paper, we propose a unified Multi-Object Tracking (MOT) framework learning to make full use of long term and short term cues for handling complex cases in MOT scenes. Besides, for better association, we propose switcher-aware classification (SAC), which takes the potential identity-switch causer (switcher) into consideration. Specifically, the proposed framework includes a Single Object Tracking (SOT) sub-net to capture short term cues, a re-identification (ReID) sub-net to extract long term cues and a switcher-aware classifier to make matching decisions using extracted features from the main target and the switcher. Short term cues help to find false negatives, while long term cues avoid critical mistakes when occlusion happens, and the SAC learns to combine multiple cues in an effective way and improves robustness. The method is evaluated on the challenging MOT benchmarks and achieves the state-of-the-art results.

Citations (116)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.