Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Nonconvex Rectangular Matrix Completion via Gradient Descent without $\ell_{2,\infty}$ Regularization (1901.06116v3)

Published 18 Jan 2019 in stat.ML and cs.LG

Abstract: The analysis of nonconvex matrix completion has recently attracted much attention in the community of machine learning thanks to its computational convenience. Existing analysis on this problem, however, usually relies on $\ell_{2,\infty}$ projection or regularization that involves unknown model parameters, although they are observed to be unnecessary in numerical simulations, see, e.g., Zheng and Lafferty [2016]. In this paper, we extend the analysis of the vanilla gradient descent for positive semidefinite matrix completion proposed in Ma et al. [2017] to the rectangular case, and more significantly, improve the required sampling rate from $O(\operatorname{poly}(\kappa)\mu3 r3 \log3 n/n )$ to $O(\mu2 r2 \kappa{14} \log n/n )$. Our technical ideas and contributions are potentially useful in improving the leave-one-out analysis in other related problems.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.