Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Nonconvex Rectangular Matrix Completion via Gradient Descent without $\ell_{2,\infty}$ Regularization (1901.06116v3)

Published 18 Jan 2019 in stat.ML and cs.LG

Abstract: The analysis of nonconvex matrix completion has recently attracted much attention in the community of machine learning thanks to its computational convenience. Existing analysis on this problem, however, usually relies on $\ell_{2,\infty}$ projection or regularization that involves unknown model parameters, although they are observed to be unnecessary in numerical simulations, see, e.g., Zheng and Lafferty [2016]. In this paper, we extend the analysis of the vanilla gradient descent for positive semidefinite matrix completion proposed in Ma et al. [2017] to the rectangular case, and more significantly, improve the required sampling rate from $O(\operatorname{poly}(\kappa)\mu3 r3 \log3 n/n )$ to $O(\mu2 r2 \kappa{14} \log n/n )$. Our technical ideas and contributions are potentially useful in improving the leave-one-out analysis in other related problems.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.