Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

First-Order vs. Second-Order Encodings for LTLf-to-Automata Translation (1901.06108v1)

Published 18 Jan 2019 in cs.LO and cs.FL

Abstract: Translating formulas of Linear Temporal Logic (LTL) over finite traces, or LTLf, to symbolic Deterministic Finite Automata (DFA) plays an important role not only in LTLf synthesis, but also in synthesis for Safety LTL formulas. The translation is enabled by using MONA, a powerful tool for symbolic, BDD-based, DFA construction from logic specifications. Recent works used a first-order encoding of LTLf formulas to translate LTLf to First Order Logic (FOL), which is then fed to MONA to get the symbolic DFA. This encoding was shown to perform well, but other encodings have not been studied. Specifically, the natural question of whether second-order encoding, which has significantly simpler quantificational structure, can outperform first-order encoding remained open. In this paper we address this challenge and study second-order encodings for LTLf formulas. We first introduce a specific MSO encoding that captures the semantics of LTLf in a natural way and prove its correctness. We then explore is a Compact MSO encoding, which benefits from automata-theoretic minimization, thus suggesting a possible practical advantage. To that end, we propose a formalization of symbolic DFA in second-order logic, thus developing a novel connection between BDDs and MSO. We then show by empirical evaluations that the first-order encoding does perform better than both second-order encodings. The conclusion is that first-order encoding is a better choice than second-order encoding in LTLf-to-Automata translation.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube