Papers
Topics
Authors
Recent
Search
2000 character limit reached

Diverse mini-batch Active Learning

Published 17 Jan 2019 in cs.LG and stat.ML | (1901.05954v1)

Abstract: We study the problem of reducing the amount of labeled training data required to train supervised classification models. We approach it by leveraging Active Learning, through sequential selection of examples which benefit the model most. Selecting examples one by one is not practical for the amount of training examples required by the modern Deep Learning models. We consider the mini-batch Active Learning setting, where several examples are selected at once. We present an approach which takes into account both informativeness of the examples for the model, as well as the diversity of the examples in a mini-batch. By using the well studied K-means clustering algorithm, this approach scales better than the previously proposed approaches, and achieves comparable or better performance.

Citations (145)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.