Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Performance Comparison of Loss Functions for Deep Face Recognition (1901.05903v2)

Published 1 Jan 2019 in cs.CV

Abstract: Face recognition is one of the most widely publicized feature in the devices today and hence represents an important problem that should be studied with the utmost priority. As per the recent trends, the Convolutional Neural Network (CNN) based approaches are highly successful in many tasks of Computer Vision including face recognition. The loss function is used on the top of CNN to judge the goodness of any network. In this paper, we present a performance comparison of different loss functions such as Cross-Entropy, Angular Softmax, Additive-Margin Softmax, ArcFace and Marginal Loss for face recognition. The experiments are conducted with two CNN architectures namely, ResNet and MobileNet. Two widely used face datasets namely, CASIA-Webface and MS-Celeb-1M are used for the training and benchmark Labeled Faces in the Wild (LFW) face dataset is used for the testing.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.