Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Background subtraction on depth videos with convolutional neural networks (1901.05676v1)

Published 17 Jan 2019 in cs.CV

Abstract: Background subtraction is a significant component of computer vision systems. It is widely used in video surveillance, object tracking, anomaly detection, etc. A new data source for background subtraction appeared as the emergence of low-cost depth sensors like Microsof t Kinect, Asus Xtion PRO, etc. In this paper, we propose a background subtraction approach on depth videos, which is based on convolutional neural networks (CNNs), called BGSNet-D (BackGround Subtraction neural Networks for Depth videos). The method can be used in color unavailable scenarios like poor lighting situations, and can also be applied to combine with existing RGB background subtraction methods. A preprocessing strategy is designed to reduce the influences incurred by noise from depth sensors. The experimental results on the SBM-RGBD dataset show that the proposed method outperforms existing methods on depth data.

Citations (17)

Summary

We haven't generated a summary for this paper yet.