Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Sentence transition matrix: An efficient approach that preserves sentence semantics (1901.05219v1)

Published 16 Jan 2019 in cs.CL

Abstract: Sentence embedding is a significant research topic in the field of NLP. Generating sentence embedding vectors reflecting the intrinsic meaning of a sentence is a key factor to achieve an enhanced performance in various NLP tasks such as sentence classification and document summarization. Therefore, various sentence embedding models based on supervised and unsupervised learning have been proposed after the advent of researches regarding the distributed representation of words. They were evaluated through semantic textual similarity (STS) tasks, which measure the degree of semantic preservation of a sentence and neural network-based supervised embedding models generally yielded state-of-the-art performance. However, these models have a limitation in that they have multiple parameters to update, thereby requiring a tremendous amount of labeled training data. In this study, we propose an efficient approach that learns a transition matrix that refines a sentence embedding vector to reflect the latent semantic meaning of a sentence. The proposed method has two practical advantages; (1) it can be applied to any sentence embedding method, and (2) it can achieve robust performance in STS tasks irrespective of the number of training examples.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.