Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Exponential Lower Bound on the Sub-Packetization of MSR Codes (1901.05112v3)

Published 16 Jan 2019 in cs.IT, cs.CC, math.CO, and math.IT

Abstract: An $(n,k,\ell)$-vector MDS code is a $\mathbb{F}$-linear subspace of $(\mathbb{F}\ell)n$ (for some field $\mathbb{F}$) of dimension $k\ell$, such that any $k$ (vector) symbols of the codeword suffice to determine the remaining $r=n-k$ (vector) symbols. The length $\ell$ of each codeword symbol is called the sub-packetization of the code. Such a code is called minimum storage regenerating (MSR), if any single symbol of a codeword can be recovered by downloading $\ell/r$ field elements (which is known to be the least possible) from each of the other symbols. MSR codes are attractive for use in distributed storage systems, and by now a variety of ingenious constructions of MSR codes are available. However, they all suffer from exponentially large sub-packetization $\ell \gtrsim r{k/r}$. Our main result is an almost tight lower bound showing that for an MSR code, one must have $\ell \ge \exp(\Omega(k/r))$. This settles a central open question concerning MSR codes that has received much attention. Previously, a lower bound of $\approx \exp(\sqrt{k/r})$, and a tight lower bound for a restricted class of "optimal access" MSR codes, were known.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.