Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

CrossNet: Latent Cross-Consistency for Unpaired Image Translation (1901.04530v2)

Published 14 Jan 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Recent GAN-based architectures have been able to deliver impressive performance on the general task of image-to-image translation. In particular, it was shown that a wide variety of image translation operators may be learned from two image sets, containing images from two different domains, without establishing an explicit pairing between the images. This was made possible by introducing clever regularizers to overcome the under-constrained nature of the unpaired translation problem. In this work, we introduce a novel architecture for unpaired image translation, and explore several new regularizers enabled by it. Specifically, our architecture comprises a pair of GANs, as well as a pair of translators between their respective latent spaces. These cross-translators enable us to impose several regularizing constraints on the learnt image translation operator, collectively referred to as latent cross-consistency. Our results show that our proposed architecture and latent cross-consistency constraints are able to outperform the existing state-of-the-art on a variety of image translation tasks.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.