Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Real-time Joint Object Detection and Semantic Segmentation Network for Automated Driving (1901.03912v1)

Published 12 Jan 2019 in cs.CV, cs.LG, and stat.ML

Abstract: Convolutional Neural Networks (CNN) are successfully used for various visual perception tasks including bounding box object detection, semantic segmentation, optical flow, depth estimation and visual SLAM. Generally these tasks are independently explored and modeled. In this paper, we present a joint multi-task network design for learning object detection and semantic segmentation simultaneously. The main motivation is to achieve real-time performance on a low power embedded SOC by sharing of encoder for both the tasks. We construct an efficient architecture using a small ResNet10 like encoder which is shared for both decoders. Object detection uses YOLO v2 like decoder and semantic segmentation uses FCN8 like decoder. We evaluate the proposed network in two public datasets (KITTI, Cityscapes) and in our private fisheye camera dataset, and demonstrate that joint network provides the same accuracy as that of separate networks. We further optimize the network to achieve 30 fps for 1280x384 resolution image.

Citations (38)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.