Learning Pairwise Relationship for Multi-object Detection in Crowded Scenes (1901.03796v1)
Abstract: As the post-processing step for object detection, non-maximum suppression (GreedyNMS) is widely used in most of the detectors for many years. It is efficient and accurate for sparse scenes, but suffers an inevitable trade-off between precision and recall in crowded scenes. To overcome this drawback, we propose a Pairwise-NMS to cure GreedyNMS. Specifically, a pairwise-relationship network that is based on deep learning is learned to predict if two overlapping proposal boxes contain two objects or zero/one object, which can handle multiple overlapping objects effectively. Through neatly coupling with GreedyNMS without losing efficiency, consistent improvements have been achieved in heavily occluded datasets including MOT15, TUD-Crossing and PETS. In addition, Pairwise-NMS can be integrated into any learning based detectors (Both of Faster-RCNN and DPM detectors are tested in this paper), thus building a bridge between GreedyNMS and end-to-end learning detectors.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.