Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Automatic classification of geologic units in seismic images using partially interpreted examples (1901.03786v1)

Published 12 Jan 2019 in cs.CV and cs.LG

Abstract: Geologic interpretation of large seismic stacked or migrated seismic images can be a time-consuming task for seismic interpreters. Neural network based semantic segmentation provides fast and automatic interpretations, provided a sufficient number of example interpretations are available. Networks that map from image-to-image emerged recently as powerful tools for automatic segmentation, but standard implementations require fully interpreted examples. Generating training labels for large images manually is time consuming. We introduce a partial loss-function and labeling strategies such that networks can learn from partially interpreted seismic images. This strategy requires only a small number of annotated pixels per seismic image. Tests on seismic images and interpretation information from the Sea of Ireland show that we obtain high-quality predicted interpretations from a small number of large seismic images. The combination of a partial-loss function, a multi-resolution network that explicitly takes small and large-scale geological features into account, and new labeling strategies make neural networks a more practical tool for automatic seismic interpretation.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.