Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Accelerated Point-wise Maximum Approach to Approximate Dynamic Programming (1901.03619v2)

Published 11 Jan 2019 in cs.SY and eess.SY

Abstract: We describe an approximate dynamic programming approach to compute lower bounds on the optimal value function for a discrete time, continuous space, infinite horizon setting. The approach iteratively constructs a family of lower bounding approximate value functions by using the so-called BeLLMan inequality. The novelty of our approach is that, at each iteration, we aim to compute an approximate value function that maximizes the point-wise maximum taken with the family of approximate value functions computed thus far. This leads to a non-convex objective, and we propose a gradient ascent algorithm to find stationary points by solving a sequence of convex optimization problems. We provide convergence guarantees for our algorithm and an interpretation for how the gradient computation relates to the state relevance weighting parameter appearing in related approximate dynamic programming approaches. We demonstrate through numerical examples that, when compared to existing approaches, the algorithm we propose computes tighter sub-optimality bounds with less computation time.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.