Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Accelerated Point-wise Maximum Approach to Approximate Dynamic Programming (1901.03619v2)

Published 11 Jan 2019 in cs.SY and eess.SY

Abstract: We describe an approximate dynamic programming approach to compute lower bounds on the optimal value function for a discrete time, continuous space, infinite horizon setting. The approach iteratively constructs a family of lower bounding approximate value functions by using the so-called Bellman inequality. The novelty of our approach is that, at each iteration, we aim to compute an approximate value function that maximizes the point-wise maximum taken with the family of approximate value functions computed thus far. This leads to a non-convex objective, and we propose a gradient ascent algorithm to find stationary points by solving a sequence of convex optimization problems. We provide convergence guarantees for our algorithm and an interpretation for how the gradient computation relates to the state relevance weighting parameter appearing in related approximate dynamic programming approaches. We demonstrate through numerical examples that, when compared to existing approaches, the algorithm we propose computes tighter sub-optimality bounds with less computation time.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube