Papers
Topics
Authors
Recent
2000 character limit reached

On Kernelization for Edge Dominating Set under Structural Parameters (1901.03582v1)

Published 11 Jan 2019 in cs.DS and cs.CC

Abstract: In the NP-hard Edge Dominating Set problem (EDS) we are given a graph $G=(V,E)$ and an integer $k$, and need to determine whether there is a set $F\subseteq E$ of at most $k$ edges that are incident with all (other) edges of $G$. It is known that this problem is fixed-parameter tractable and admits a polynomial kernel when parameterized by $k$. A caveat for this parameter is that it needs to be large, i.e., at least equal to half the size of a maximum matching of $G$, for instances not to be trivially negative. Motivated by this, we study the existence of polynomial kernels for EDS when parameterized by structural parameters that may be much smaller than $k$. Unfortunately, at first glance this looks rather hopeless: Even when parameterized by the deletion distance to a disjoint union of paths $P_3$ of length two there is no polynomial kernelization (under standard assumptions), ruling out polynomial kernels for many smaller parameters like the feedback vertex set size. In contrast, somewhat surprisingly, there is a polynomial kernelization for deletion distance to a disjoint union of paths $P_5$ of length four. As our main result, we fully classify for all finite sets $\mathcal{H}$ of graphs, whether a kernel size polynomial in $|X|$ is possible when given $X$ such that each connected component of $G-X$ is isomorphic to a graph in $\mathcal{H}$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.