Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

No-Regret Bayesian Optimization with Unknown Hyperparameters (1901.03357v2)

Published 10 Jan 2019 in stat.ML and cs.LG

Abstract: Bayesian optimization (BO) based on Gaussian process models is a powerful paradigm to optimize black-box functions that are expensive to evaluate. While several BO algorithms provably converge to the global optimum of the unknown function, they assume that the hyperparameters of the kernel are known in advance. This is not the case in practice and misspecification often causes these algorithms to converge to poor local optima. In this paper, we present the first BO algorithm that is provably no-regret and converges to the optimum without knowledge of the hyperparameters. During optimization we slowly adapt the hyperparameters of stationary kernels and thereby expand the associated function class over time, so that the BO algorithm considers more complex function candidates. Based on the theoretical insights, we propose several practical algorithms that achieve the empirical sample efficiency of BO with online hyperparameter estimation, but retain theoretical convergence guarantees. We evaluate our method on several benchmark problems.

Citations (65)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.