Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Quantum-inspired sublinear algorithm for solving low-rank semidefinite programming (1901.03254v2)

Published 10 Jan 2019 in cs.DS, cs.LG, math.OC, and quant-ph

Abstract: Semidefinite programming (SDP) is a central topic in mathematical optimization with extensive studies on its efficient solvers. In this paper, we present a proof-of-principle sublinear-time algorithm for solving SDPs with low-rank constraints; specifically, given an SDP with $m$ constraint matrices, each of dimension $n$ and rank $r$, our algorithm can compute any entry and efficient descriptions of the spectral decomposition of the solution matrix. The algorithm runs in time $O(m\cdot\mathrm{poly}(\log n,r,1/\varepsilon))$ given access to a sampling-based low-overhead data structure for the constraint matrices, where $\varepsilon$ is the precision of the solution. In addition, we apply our algorithm to a quantum state learning task as an application. Technically, our approach aligns with 1) SDP solvers based on the matrix multiplicative weight (MMW) framework by Arora and Kale [TOC '12]; 2) sampling-based dequantizing framework pioneered by Tang [STOC '19]. In order to compute the matrix exponential required in the MMW framework, we introduce two new techniques that may be of independent interest: $\bullet$ Weighted sampling: assuming sampling access to each individual constraint matrix $A_{1},\ldots,A_{\tau}$, we propose a procedure that gives a good approximation of $A=A_{1}+\cdots+A_{\tau}$. $\bullet$ Symmetric approximation: we propose a sampling procedure that gives the \emph{spectral decomposition} of a low-rank Hermitian matrix $A$. To the best of our knowledge, this is the first sampling-based algorithm for spectral decomposition, as previous works only give singular values and vectors.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.