Emergent Mind

Gaussian processes with linear operator inequality constraints

(1901.03134)
Published Jan 10, 2019 in stat.ML and cs.LG

Abstract

This paper presents an approach for constrained Gaussian Process (GP) regression where we assume that a set of linear transformations of the process are bounded. It is motivated by machine learning applications for high-consequence engineering systems, where this kind of information is often made available from phenomenological knowledge. We consider a GP $f$ over functions on $\mathcal{X} \subset \mathbb{R}{n}$ taking values in $\mathbb{R}$, where the process $\mathcal{L}f$ is still Gaussian when $\mathcal{L}$ is a linear operator. Our goal is to model $f$ under the constraint that realizations of $\mathcal{L}f$ are confined to a convex set of functions. In particular, we require that $a \leq \mathcal{L}f \leq b$, given two functions $a$ and $b$ where $a < b$ pointwise. This formulation provides a consistent way of encoding multiple linear constraints, such as shape-constraints based on e.g. boundedness, monotonicity or convexity. We adopt the approach of using a sufficiently dense set of virtual observation locations where the constraint is required to hold, and derive the exact posterior for a conjugate likelihood. The results needed for stable numerical implementation are derived, together with an efficient sampling scheme for estimating the posterior process.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.