Papers
Topics
Authors
Recent
2000 character limit reached

Robust and Adaptive Planning under Model Uncertainty (1901.02577v1)

Published 9 Jan 2019 in cs.AI and cs.LG

Abstract: Planning under model uncertainty is a fundamental problem across many applications of decision making and learning. In this paper, we propose the Robust Adaptive Monte Carlo Planning (RAMCP) algorithm, which allows computation of risk-sensitive Bayes-adaptive policies that optimally trade off exploration, exploitation, and robustness. RAMCP formulates the risk-sensitive planning problem as a two-player zero-sum game, in which an adversary perturbs the agent's belief over the models. We introduce two versions of the RAMCP algorithm. The first, RAMCP-F, converges to an optimal risk-sensitive policy without having to rebuild the search tree as the underlying belief over models is perturbed. The second version, RAMCP-I, improves computational efficiency at the cost of losing theoretical guarantees, but is shown to yield empirical results comparable to RAMCP-F. RAMCP is demonstrated on an n-pull multi-armed bandit problem, as well as a patient treatment scenario.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.