Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Thinking Outside the Pool: Active Training Image Creation for Relative Attributes (1901.02551v1)

Published 8 Jan 2019 in cs.CV

Abstract: Current wisdom suggests more labeled image data is always better, and obtaining labels is the bottleneck. Yet curating a pool of sufficiently diverse and informative images is itself a challenge. In particular, training image curation is problematic for fine-grained attributes, where the subtle visual differences of interest may be rare within traditional image sources. We propose an active image generation approach to address this issue. The main idea is to jointly learn the attribute ranking task while also learning to generate novel realistic image samples that will benefit that task. We introduce an end-to-end framework that dynamically "imagines" image pairs that would confuse the current model, presents them to human annotators for labeling, then improves the predictive model with the new examples. With results on two datasets, we show that by thinking outside the pool of real images, our approach gains generalization accuracy for challenging fine-grained attribute comparisons.

Citations (23)

Summary

We haven't generated a summary for this paper yet.