Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Inverse Rendering of an Indoor Scene from a Single Image (1901.02453v3)

Published 8 Jan 2019 in cs.CV

Abstract: Inverse rendering aims to estimate physical attributes of a scene, e.g., reflectance, geometry, and lighting, from image(s). Inverse rendering has been studied primarily for single objects or with methods that solve for only one of the scene attributes. We propose the first learning-based approach that jointly estimates albedo, normals, and lighting of an indoor scene from a single image. Our key contribution is the Residual Appearance Renderer (RAR), which can be trained to synthesize complex appearance effects (e.g., inter-reflection, cast shadows, near-field illumination, and realistic shading), which would be neglected otherwise. This enables us to perform self-supervised learning on real data using a reconstruction loss, based on re-synthesizing the input image from the estimated components. We finetune with real data after pretraining with synthetic data. To this end, we use physically-based rendering to create a large-scale synthetic dataset, which is a significant improvement over prior datasets. Experimental results show that our approach outperforms state-of-the-art methods that estimate one or more scene attributes.

Citations (138)

Summary

We haven't generated a summary for this paper yet.