Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

SNRA: A Spintronic Neuromorphic Reconfigurable Array for In-Circuit Training and Evaluation of Deep Belief Networks (1901.02415v1)

Published 8 Jan 2019 in cs.ET, cs.AR, cs.LG, and stat.ML

Abstract: In this paper, a spintronic neuromorphic reconfigurable Array (SNRA) is developed to fuse together power-efficient probabilistic and in-field programmable deterministic computing during both training and evaluation phases of restricted Boltzmann machines (RBMs). First, probabilistic spin logic devices are used to develop an RBM realization which is adapted to construct deep belief networks (DBNs) having one to three hidden layers of size 10 to 800 neurons each. Second, we design a hardware implementation for the contrastive divergence (CD) algorithm using a four-state finite state machine capable of unsupervised training in N+3 clocks where N denotes the number of neurons in each RBM. The functionality of our proposed CD hardware implementation is validated using ModelSim simulations. We synthesize the developed Verilog HDL implementation of our proposed test/train control circuitry for various DBN topologies where the maximal RBM dimensions yield resource utilization ranging from 51 to 2,421 lookup tables (LUTs). Next, we leverage spin Hall effect (SHE)-magnetic tunnel junction (MTJ) based non-volatile LUTs circuits as an alternative for static random access memory (SRAM)-based LUTs storing the deterministic logic configuration to form a reconfigurable fabric. Finally, we compare the performance of our proposed SNRA with SRAM-based configurable fabrics focusing on the area and power consumption induced by the LUTs used to implement both CD and evaluation modes. The results obtained indicate more than 80% reduction in combined dynamic and static power dissipation, while achieving at least 50% reduction in device count.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.