Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

DEMN: Distilled-Exposition Enhanced Matching Network for Story Comprehension (1901.02252v1)

Published 8 Jan 2019 in cs.CL

Abstract: This paper proposes a Distilled-Exposition Enhanced Matching Network (DEMN) for story-cloze test, which is still a challenging task in story comprehension. We divide a complete story into three narrative segments: an \textit{exposition}, a \textit{climax}, and an \textit{ending}. The model consists of three modules: input module, matching module, and distillation module. The input module provides semantic representations for the three segments and then feeds them into the other two modules. The matching module collects interaction features between the ending and the climax. The distillation module distills the crucial semantic information in the exposition and infuses it into the matching module in two different ways. We evaluate our single and ensemble model on ROCStories Corpus \cite{Mostafazadeh2016ACA}, achieving an accuracy of 80.1\% and 81.2\% on the test set respectively. The experimental results demonstrate that our DEMN model achieves a state-of-the-art performance.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.