Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Distributed Learning with Adversarial Agents Under Relaxed Network Condition (1901.01943v1)

Published 7 Jan 2019 in cs.DC

Abstract: This work studies the problem of non-Bayesian learning over multi-agent network when there are some adversarial (faulty) agents in the network. At each time step, each non-faulty agent collects partial information about an unknown state of the world and tries to estimate true state of the world by iteratively sharing information with its neighbors. Existing algorithms in this setting require that all non-faulty agents in the network should be able to achieve consensus via local information exchange. In this work, we present an analysis of a distributed algorithm which does not require the network to achieve consensus. We show that if every non-faulty agent can receive enough information (via iteratively communicating with neighbors) to differentiate the true state of the world from other possible states then it can indeed learn the true state.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.