Papers
Topics
Authors
Recent
Search
2000 character limit reached

GASL: Guided Attention for Sparsity Learning in Deep Neural Networks

Published 7 Jan 2019 in cs.CV | (1901.01939v2)

Abstract: The main goal of network pruning is imposing sparsity on the neural network by increasing the number of parameters with zero value in order to reduce the architecture size and the computational speedup. In most of the previous research works, sparsity is imposed stochastically without considering any prior knowledge of the weights distribution or other internal network characteristics. Enforcing too much sparsity may induce accuracy drop due to the fact that a lot of important elements might have been eliminated. In this paper, we propose Guided Attention for Sparsity Learning (GASL) to achieve (1) model compression by having less number of elements and speed-up; (2) prevent the accuracy drop by supervising the sparsity operation via a guided attention mechanism and (3) introduce a generic mechanism that can be adapted for any type of architecture; Our work is aimed at providing a framework based on interpretable attention mechanisms for imposing structured and non-structured sparsity in deep neural networks. For Cifar-100 experiments, we achieved the state-of-the-art sparsity level and 2.91x speedup with competitive accuracy compared to the best method. For MNIST and LeNet architecture we also achieved the highest sparsity and speedup level.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.