Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Randomized Tensor Ring Decomposition and Its Application to Large-scale Data Reconstruction (1901.01652v1)

Published 7 Jan 2019 in cs.NA, cs.LG, and math.NA

Abstract: Dimensionality reduction is an essential technique for multi-way large-scale data, i.e., tensor. Tensor ring (TR) decomposition has become popular due to its high representation ability and flexibility. However, the traditional TR decomposition algorithms suffer from high computational cost when facing large-scale data. In this paper, taking advantages of the recently proposed tensor random projection method, we propose two TR decomposition algorithms. By employing random projection on every mode of the large-scale tensor, the TR decomposition can be processed at a much smaller scale. The simulation experiment shows that the proposed algorithms are $4-25$ times faster than traditional algorithms without loss of accuracy, and our algorithms show superior performance in deep learning dataset compression and hyperspectral image reconstruction experiments compared to other randomized algorithms.

Citations (25)

Summary

We haven't generated a summary for this paper yet.