Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 69 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Blind Motion Deblurring with Cycle Generative Adversarial Networks (1901.01641v2)

Published 7 Jan 2019 in cs.CV

Abstract: Blind motion deblurring is one of the most basic and challenging problems in image processing and computer vision. It aims to recover a sharp image from its blurred version knowing nothing about the blur process. Many existing methods use Maximum A Posteriori (MAP) or Expectation Maximization (EM) frameworks to deal with this kind of problems, but they cannot handle well the figh frequency features of natural images. Most recently, deep neural networks have been emerging as a powerful tool for image deblurring. In this paper, we prove that encoder-decoder architecture gives better results for image deblurring tasks. In addition, we propose a novel end-to-end learning model which refines generative adversarial network by many novel training strategies so as to tackle the problem of deblurring. Experimental results show that our model can capture high frequency features well, and the results on benchmark dataset show that proposed model achieves the competitive performance.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube