Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sharp Restricted Isometry Bounds for the Inexistence of Spurious Local Minima in Nonconvex Matrix Recovery (1901.01631v3)

Published 7 Jan 2019 in cs.LG, math.OC, and stat.ML

Abstract: Nonconvex matrix recovery is known to contain no spurious local minima under a restricted isometry property (RIP) with a sufficiently small RIP constant $\delta$. If $\delta$ is too large, however, then counterexamples containing spurious local minima are known to exist. In this paper, we introduce a proof technique that is capable of establishing sharp thresholds on $\delta$ to guarantee the inexistence of spurious local minima. Using the technique, we prove that in the case of a rank-1 ground truth, an RIP constant of $\delta<1/2$ is both necessary and sufficient for exact recovery from any arbitrary initial point (such as a random point). We also prove a local recovery result: given an initial point $x_{0}$ satisfying $f(x_{0})\le(1-\delta){2}f(0)$, any descent algorithm that converges to second-order optimality guarantees exact recovery.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube