Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Enhancing Sound Texture in CNN-Based Acoustic Scene Classification (1901.01502v1)

Published 6 Jan 2019 in cs.SD, cs.LG, eess.AS, eess.SP, and stat.ML

Abstract: Acoustic scene classification is the task of identifying the scene from which the audio signal is recorded. Convolutional neural network (CNN) models are widely adopted with proven successes in acoustic scene classification. However, there is little insight on how an audio scene is perceived in CNN, as what have been demonstrated in image recognition research. In the present study, the Class Activation Mapping (CAM) is utilized to analyze how the log-magnitude Mel-scale filter-bank (log-Mel) features of different acoustic scenes are learned in a CNN classifier. It is noted that distinct high-energy time-frequency components of audio signals generally do not correspond to strong activation on CAM, while the background sound texture are well learned in CNN. In order to make the sound texture more salient, we propose to apply the Difference of Gaussian (DoG) and Sobel operator to process the log-Mel features and enhance edge information of the time-frequency image. Experimental results on the DCASE 2017 ASC challenge show that using edge enhanced log-Mel images as input feature of CNN significantly improves the performance of audio scene classification.

Citations (38)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)