Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Channel Locality Block: A Variant of Squeeze-and-Excitation (1901.01493v1)

Published 6 Jan 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Attention mechanism is a hot spot in deep learning field. Using channel attention model is an effective method for improving the performance of the convolutional neural network. Squeeze-and-Excitation block takes advantage of the channel dependence, selectively emphasizing the important channels and compressing the relatively useless channel. In this paper, we proposed a variant of SE block based on channel locality. Instead of using full connection layers to explore the global channel dependence, we adopt convolutional layers to learn the correlation between the nearby channels. We term this new algorithm Channel Locality(C-Local) block. We evaluate SE block and C-Local block by applying them to different CNNs architectures on cifar-10 dataset. We observed that our C-Local block got higher accuracy than SE block did.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.