Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Population-Guided Large Margin Classifier for High-Dimension Low -Sample-Size Problems (1901.01377v2)

Published 5 Jan 2019 in cs.LG and stat.ML

Abstract: Various applications in different fields, such as gene expression analysis or computer vision, suffer from data sets with high-dimensional low-sample-size (HDLSS), which has posed significant challenges for standard statistical and modern machine learning methods. In this paper, we propose a novel linear binary classifier, denoted by population-guided large margin classifier (PGLMC), which is applicable to any sorts of data, including HDLSS. PGLMC is conceived with a projecting direction w given by the comprehensive consideration of local structural information of the hyperplane and the statistics of the training samples. Our proposed model has several advantages compared to those widely used approaches. First, it is not sensitive to the intercept term b. Second, it operates well with imbalanced data. Third, it is relatively simple to be implemented based on Quadratic Programming. Fourth, it is robust to the model specification for various real applications. The theoretical properties of PGLMC are proven. We conduct a series of evaluations on two simulated and six real-world benchmark data sets, including DNA classification, digit recognition, medical image analysis, and face recognition. PGLMC outperforms the state-of-the-art classification methods in most cases, or at least obtains comparable results.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube