Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multi-task Prediction of Patient Workload (1901.00746v1)

Published 27 Dec 2018 in cs.CY, cs.LG, and stat.ML

Abstract: Developing reliable workload predictive models can affect many aspects of clinical decision making procedure. The primary challenge in healthcare systems is handling the demand uncertainty over the time. This issue becomes more critical for the healthcare facilities that provide service for chronic disease treatment because of the need for continuous treatments over the time. Although some researchers focused on exploring the methods for workload prediction recently, few types of research mainly focused on forecasting a quantitative measure for the workload of healthcare providers. Also, among the mentioned studies most of them just focused on workload prediction within one facility. The drawback of the previous studies is the problem is not investigated for multiple facilities where the quality of provided service, the equipment, and resources used for provided service as well as the diagnosis and treatment procedures may differ even for patients with similar conditions. To tackle the mentioned issue, this paper suggests a framework for patient workload prediction by using patients data from VA facilities across the US. To capture the information of patients with similar attributes and make the prediction more accurate, a heuristic cluster based algorithm for single task learning as well as a multi task learning approach are developed in this research.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.